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ABSTRACT

The boundary element method (BEM) has been receatlygnized as one of the very useful tools in yaiad
many of the mechanical problems. Not needing catmr field discretization and solving the probleising boundary
information are the most important features andaathges of this method. Using this method for sgivinonlinear
problems and also linear problems dealing withgrakexpressions on the field resulted from them®ipression has
gained more importance with proposing the Dual pecity Method (DRM). This paper discusses how thisthod is
applied for solving incompressible Navier-Stokesiagpns, and the results show that this methodHhigisly desired

accuracy.

KEYWORDS: Boundary Element Method, Navier-Stokes, Dual Rexijly Method, Fundamental Solution, Integral

Equations
1.0 INTRODUCTION

BEM is one of the most recent numerical solutiorthrods for most mechanical problems. This methodabeg
around 1970 as a strongly practical tool and deexldn the following years. The use of this methad first only limited
to solving linear governing equations. From aro@®880 onwards, using this method was proposed iergdpr solving
nonlinear equations for fluids. So far the meth@s been able to solve many of nonlinear problendeuspecific
conditions and it is expected to be able to anaiyaay of the nonlinear problems more easily thaitfidifference and
finite element methods in the near future. Not iegdrid generation in calculation field, solvirtietproblem only on the
boundary points and actually solving the problerthwine less dimension and thus needing less commeory are the
major advantages of this method. Regarding that baundary discretization is done in this methde, available model
building codes such as ARIES and PATRAN can bedyased for preprocessing. The difficulties of ggeneration will
be revealed more than ever, especially if the batiad of the computational domain in several lemelsd to be changed
for accessing the optimized design. One of therophiwileges of this method is that after findingetsolution on the
boundaries, the solutions could be found with lagburacy on any intended point in the domain, astconly on specific

grid points.

In the BEM, the integral equation equal to the goire equation is first found, which includes salentegral
expressions. If the governing equation is one llaatno fundamental solution, the integral expressachieved will all be
boundary integrals. Otherwise, the governing eguasihould be divided into two parts, so that one pas an operator
with the fundamental solution available for it, athé other part is considered to be a source esioresThis will result

into an integral expression on the computationahaio, calculating the integral of which is the desa difficulty in the
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BEM. There are different methods for solving thislgem, of which DRM is preferred by many of theearchers for
general and common source expressions. This meashosed in this paper for solving the problem. gsthis method,
there is no need for gridding in the calculatia@idiand only some of the internal points shouldiged, the coordinates of

which can be recognized easily.

This paper discusses solving the permanent incassjile Navier-Stokes equations in a cavity withlibendary
element and dual reciprocity methods. The Naviek&t equations were first examined with the BEMBloigh

and Tanner [1].

Using the fundamental solution for Stokes equatemd considering the nonlinear expressions for ection as
source expressions, these researchers found theléquintegral formulation for the equations, whareddition to the
boundary integrals; they also faced an integrahendomain, and inevitably had to get help from dondiscretization for

solving it.

After that, a similar formulation was proposed hys@ka and Onishi [2], using which the integral kesufrom
nonlinear expressions was first turned into tweegnéls by a part to part integration where onehef integrals was
boundary and the other was an integral on the doimaluding the velocities and derivative of thedamental solution.
Although domain discretization was used again folvieg this integral, but since this integral ladkéhe derivative
expressions of velocities, it was more practical preferred to the method proposed by Bush and éradiso, using the
Stokes fundamental solution, Dargush and Banergjeanalyzed the Navier-Stokes equations along thiehequation of
energy for permanent, incompressible and thermmouis flow using the BEM, in which they too useddidiscretization

for calculating the integral on the domain.

The penalty function methods common to finite défece and element formulations were also used bpk{et
al. [4] and Kitagawa and Brebbia [5] for solving \Wex-Stokes equations using the BEM. In this methbeé penalty
function is used for linking the pressure to divarge in the velocity field, and therefore the Nea8tokes equations turn

to Navier elasticity with an expression of physieaérgy resulted from nonlinear convection expoFssi

In addition to directly solving the permanent Nav&tokes equations, the nonpermanent form of tegsations
was also used by many researchers for finding mgeent solution. Using time discretization, Tosakd Onishi turned
these equations into a nonlinear convection equatial Stokes linear equations. Kakuda and Tosdkasptl two time-
splitting methods which led to a convection-diffusiequation and a linear Euler equation. A revieds @omparison of the
three methods mentioned above were also done bgk@iaand Kakuda [8]. Moreover, a solution to theggadons using
the fundamental solution for nonpermanent Stokem#uons was performed by Dargush and Banergeevfgith led to a

boundary integral formulation and an integral espren on the time and domain.

In all the methods mentioned above, there is alveaymtegral expression on the domain resulted fnominear
convection expressions, which requires discretimatif computational domain for being calculated.eWhliscussing the
discretization of computational domain, the poptyaof the BEM is reduced, since field discretinatiis also added to it
and it no longer considers only the discretizafimnsolving the problem. This paper discusses agltivo dimensional
Navier-Stokes equations in a cavity using the deaiprocity technique in the BEM, by which the igrtal expression on
the computational domain will be turned into boundategrals using a series of specific solutiob8, [11]. Thus, using

this method, the nonlinear equations can be andlprdy by discretization of computational boundsrieithout field
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discretization being required.
2. GOVERNING EQUATIONS

Regarding that the fluid is assurrincompressiblethe conservation of mass is defined by the congreguatior
as follows:

V.i=0 (1)

p[g:— (G.V].J'] = pf — Vp £ u¥ii

Problem-Solving Flowchart is shownn Figure 1
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Figure 1: Flowchart of the Solving Using BEM

Regarding that the density and fluid velocity constant and also there is no mass energy, thera@t®n of
momentum equation will be:

o2 = Tp + i @
Regarding these equations, the velc-pressure formulation for Navier Stokes equatiorthé

uj; =0 (3
puju;; = —pj + p(uy; + uy); (4)
And if g; represents convection terms, we will h

p(ui; +u); — pj = 8 )

In fact, the nonlinear expressions are separated finear expressions by. The integral equation regarding
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partial differential equations system mentionedvalfor pointx € Q is [12].

u(x) = f Ky (%, y)u;(y)dTy
r

- fF Gik(X! Y)tl(y)dry (6)

+ f Gik(x y)gi(y)dQy
r

Wheret;(y) = o;;(u;(y), p(y))n;(y)the vector of traction energy;(u;, p) = —pd;; + u(u;; + u;;) is the tensor
of the tension resulted from the flow fie{d;(y), p) and n(y) is the normal vector of the single regressivetoerl
boundary in the y poinG;(x,y), called Stokes let is the single fundamental smhuto Stokes equations, which is in
position y and direction k. [Kis also the traction vector resulted from thiskB®let, and is called the stress let. Figure 2
shows how the Stokes generates using concentiaddr different directions. The Green’s functisrdefined as follows:

1 rrg
Gik(x,y) = ~Im (2 ~ SikInr)

1rinr
Kig(x,y) = — =< (y) (7)
r=[x—-yl , i=x-y
G:l
l:-':11.
ﬁ
X #
G:u
3

Figure 2: The Effect of the Concentrated Load in Pimt £ on Pointi

Now if the interior point x is leaded to the boungdaconsidering the dual potential leap characédion, the
integral equation for the points on the boundarylvé as follows

Cyuy(x) = f Ky (G y)u; (y)dI'y

r
—Jr Gi@ Yt ()dry (8)

+ f G (@ Vg (y)de,

r
Wherec;; = 0(£)d;/2n and®(§) is the internal angle igel’ point. As you can see, one of the integral

expressions above is defined on ¢harea, for calculating which the dual reciprocitgthrod will be used.

2.1 The Dual Reciprocity Method (DRM)

In the dual reciprocity method, thefgnction in the f function spaces is expandedodews
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gi = puju;; = Z&:l f(x, y™)0i"dq

9

The above series includes the f functions, whieghdepended to the intended geometry, andrtimelices. The

way these indices are found will be explained latéith regard to what has been said, we can write:

f G (oY) (), =
Q
P o [ G y)f(y, 2™)3,dQ

Now assume that; andt;;, are solutions to the following divergent Stokgsaion:

%y (xy™)  apixy™)
— = f(x, v™)8.
5X]' 0Xj 5Xi ( ’ y )611

oy _

6xi -

Now if Green’s theorem is applied in this problene have
Ug(x,2™) = [ Kig(x,y)b;(y,z™)dly

= Ji GGy, z™dry

—J- Gik(x, Yf(y, 2™)8;dQ,
)

Or

f Gur o Y)Y, )89, = i (x,2™)
Q
- fr Kk] (X, Y)GJI(Yi Zm)dry

- f Gux oY)t (7, 2™,
T

(10)

(11)

(12)

(13)

(14)

Wheret;; is the vector of traction energy for the aboveedient Stokes equation and is as follows:

tu(y.2) = Oij (. 2), b1y, Z))nj )

Finally, by placing (13) in (9) we have

f G (o Y, 230,
Q

p
= > AP {0 z™

m=1

- fr Kkj (X: Y)ﬁll(}". Zm)dry
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+f G, Yy, z™)dry, 3
r

And therefore, from (16) and (6), an integral rielatdefined only on the boundary will be resultedalows

u(x) = f Ky (%, y)u; (y)dI'y
T

- f Gt (oY) ()T,
T
+ Yo o g (x,2™) (17)

- J- Kk] (X, Y)ﬁjl(Yﬁ Zm)dry
r

+ f G Gyt (7, 2, }
T

And if £ is one of the boundary points, regarding the ¢amdéntial leap on the boundary, the integral equati

above will be as follows

6 (Ou© = | Ko@nudr,

r

—f G (& V)t ()dly

r

+ 202 Mg (©)0; (6 2™) (18)

B f Ky (& y)tji(y, z™)dIy

r

+J- Gik(i'}’)fu(y'zm)dry }
r

Now, the way of finding thé;, specific solution and the related traction vectgrand alsay indices will be
examined. On one hand, the f function should ts €ietermined for finding the specific solutionaetjng Equation (11).

Therefore, the following items should be determined
* The f function
* The specific solution

* Thea Coefficients
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2.1.1 The f Function

Studying the results of previous researches in DiRbWw that although different f functions can beduas a base
for expanding the source expression, but the lesstits are usually gained by choosing f=1+r, whefg-y|. Regarding
the references available on DRM, choosing this kafidunction was not based on mathematical anglysit on the
researchers’ experiments. However, recent studiethe interpolation theory based on radial basigtions somehow

justify this choice [13].
2.1.2 The Specific Solution

In order to find the specific solution regarding tiivergent Stokes equation, the same method & as¢he one
used for the fundamental solution in the conver@tokes equation [14]. First, the second placeotangx, y) is defined
as follows based on an auxiliary potentéat):

fig(zy) = 8%y 0w
il ‘y _5Xkaxk il aXiaxi

(19)

With a derivation from the relation above, it cam ¢een that the continuity equation is automaicsditisfied.
Placing (19) in (11) gives

u ( oty 8i] oty ) (20)

0x; 0x; 0xy Oxy N 0x; 0% 0% 0x]

o
— 5 = 1+

Now if we assume thak (r) applies to the biharmonic equation, meaning

oty
H 0x; 0X; 0x O
j 0Xj OXk OXk

Then the pressure field should satisfy the follaydguation:

aty ap]
———+—=0 22
uﬁx]- 0xj 0% 0x) + 0xj ( )

And therefore, the following will be resulted:

23y

ﬁ] - _”axi 0xj 0x) (23)
The solution for equation (21) will be
SRS (24)

64 225

Now with placing the¥ potential gained in equations (19) and (23), tbkoWwing relations are found for

divergent Stokes flow field:
Oij x Y):ﬁ [r® (% +:—;) -0j) I (% +1—r5)] (25)
~ 1 r
p(xy)=-1 G +3) (26)

The tension tensor regarding this field and alsorélated traction vector will be
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~ - 1 1 1 2rirjrl
on (Uyxy), pxy))=n (G + §)5n +r C+ g) S+ (G + g) di1 '% (27)

_ _ 1 . r 1 r 1 . r 2rirjrl
G y)=oun=n G+ ) mtr G+ ) mtr C+2)nidy -—_—n (28)

2.1.3 Thea Indices

In order to find thea indices, Equation (9) is calculated for all thedes on the boundary and in the field.

Therefore,

-1 -1
of = [Fy™y)] aG™ = [Fiy™y)]  pujuy;y™) (29)
In order to be released from the derivative expoess;(x) is itself expanded again in the same space; mganin
u(x) = F(x,y™B;" (30)
Thus it can be written that

-1
B = [FO™y)] wG™ (31)
Is derived from (30)
w0 = [ FCuy™| B (32)

]

And by placing thgd numbers from Equation (31), the following is réedl
(0 = [P y™ | x [P y9)] werm™) 33
Now if the matrixU;(y™,y") is defined as follows
Ui(y™y™ = ui(y™)dmn (34)
It can be concluded that
[puju;; ] ™) = pUs 7™, y™) [6ix] F(x, ym)] [Fr™y")] " w(™ (35)
Regarding the Equations (29) and (35), we have

o = [F(y™, y9)] ™ pus(y™, y™ [aix] F(X.ym)] (36)

-1
[FGy™y")] w™)
Considering that the Equation above depends orsdhdion U, the solution method will require repetition. In
order to begin the solution, an answer is firstypsidered as the initial assumption (usually Stdiedd solution), and then
solving the problem with the repetitious methodl e done until convergence to the solution.

2.2 Numerical Solution Method

Equation (18) is the basis of calculations for tlvenerical solution method. In the numerical methbd,defined

integrals on the boundary are written as the istidgn of the defined integrals on the boundary elets, and then, by
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calculating these integralsith the Gauss method, an algebraic equation systeathieved [15, 16]. By solving tF
equation system and determining the answer in é&aaH, the right part of the equations is corrected these stej

continue until the convergence of the solut Regarding Equatio(iL8), the following can be writte:

N
ai@u@ - Y [ gEyumar,

n=1 I'n
+ Z§=1 frn Gik(Ey Y)tl(Y)d 1—‘y
= Y1 o {0 (@056 2™) (37)
N
- [ kg@naeamar,

n=1 Tn

N
+3 [ Gt amary)

n=1 Tn

In this relation too, it is an interal point,c,;(&) equal$,;, and if the point is boundary, in will be calced
regarding the material’s angle in that point. Feg3 shows the components of the r vector whictt;, r, and r in the p

direction which is shown by.r

T2

Iy

Figure 3: Thery, r, and r Vectors in Relation to Each Qher

When the integration is done on an element withcthrecentrated load, we will face a singular intégrith weak

technique. In this case, regarding fig3, the following can be written

ry=0, r, =rcos0, r, =rsin6 (38)
Now if G; = fr_ G141 (& y)dTy , with regard to (7), we will have

2
Gy = n%ﬁp(%—lnr) dr (39)

1

1
= J- —(cos?0 — Inr)dr
4mp

2
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1
2
1
= | —(cos20 — Inr)dr
4mp
0

_ ! ( 29 —1 1-1-1)
_47TH cos n2

Where | is the length of the boundary element. Tweswill have

Gyp = 4%“ (cosze - ln% + 1) (40)
Gyy = Gyy = %wsinecose (41)

Also, regarding thagn, = 0, then the integrals includingwill equal zero.
After calculating the above integrals with the Gaosethod, the following equation system will bectesd
Gt — Hu = (GT — HO) (42)

In the relation aboves; andH are square or rectangular matrices and their elesa@e gained by the integration
of Ky; and G, cores on the boundary elements. When calculatndpdundary points, the matrices are square and whe
calculating for the internal points, they will bectangular. By placing the numbers from Equation (36), the following

can be written

Gt— Hu = Su (43)
Where
s = (GT — HO)F'U;F;F ! (44)

All the above matrices — except Uj — are geométnctions and needs to be calculated.
3. NUMERICAL SOLUTION RESULTS

This section examines the results of solving theiiétaStokes equations in a cavity for different Relgs
numbers. In order to solve the problem, constagmehts are used, which on one hand, has causedtthkenapplied
more easily in the computer program, and on therdtiand, has solved the problem of the anglesase of using linear
elements or elements in higher levels, there wlinmdes in the angles of the computational aregaf@eg that the
traction energies are not continual in the andlasjng nodes in the angles will cause difficultisgice in that case the
traction energies in the angles are assumed toobénaal. One of the methods of solving this prablés using

discontinuous elements, which will be proposediinife researches.

A comparison of the numeral solution results byfthite difference method and BEM confirms the aexy of
the solutions gained, as presented in Figures 45amy increasing the Reynolds number, the effédhe fluid inertia
gradually increases and therefore, more informadiornhe fluid behavior is required in the computaéil area in order to
have more accuracy for the solutions found. Chapasiere internal points will cause more informattorbe available in
the computational domain and therefore, the mageRilynolds number increases, the more it is redjinethe number of

internal points to increase [17].
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Figure 4: The Horizontal Fluid Velocity in the Cavity’s Central Line in Re = 10
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Figure 5: The Horizontal Fluid Velocity in the Cavity’s Central Line in Re = 100.

40 boundary elements are uded Re = 10, and 96 boundary elements are congldimeRe = 100. Also, 81 and 5.

internal points are considered for Re = 10 and R8G-respectivel
4. CONCLUSIONS

The BEM has been recently recognized as one ofvéing useful tools in analyzing ma of the mechanical
problems. Calculation field discretization is needed and solving the problem using boundary irddion are the mo:
important features and advantages of this methsihd.this method to solve nonlinear problems asd hhear prolems
dealing with integral terms on the field resultedinfi the main expression has gained more importafitbeproposing the
Dual Reciprocity Method (DRM). This paper discusdeow this method was applied for solving incompitdes

Navier-Stokes equations.
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